Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Alexandria Engineering Journal ; 67:503-511, 2023.
Article in English | ScienceDirect | ID: covidwho-2164958

ABSTRACT

The concentration of triclosan in wastewater is expected to rise dramatically as a consequence of the COVID-19 pandemic. A modeling analysis of the growth kinetics of microbial culture during triclosan degradation was necessary in order to establish effective wastewater treatment. The kinetic parameters are used by engineers to aid in the design and process control of biological processes. Studies were conducted using triclosan-acclimated culture to examine biomass growth and associated substrate degradation at different initial substrate concentrations (0.35–4.9 mg L−1) to this end. Substrate inhibition was calculated from experimental growth parameters using unstructured kinetic models. Unlike other model studies, a time-averaged specific bacterial growth rate in the log phase was considered for kinetic models in this study. Overestimation of the conventional log phase calculation for unstructured kinetic model constants was eliminated when the slowdown growth part of the log growth phase was taken into account. The Haldane Model was more accurate to fitting experimental data in an excellent manner. In this case, the time-averaged specific growth rate, saturation constant, and inhibition constant were 0.56 h−1, 12.77 mg L−1, 0.52 mg L−1, respectively. A yield coefficient of 0.404 mgX.mgS−1 was calculated. The critical triclosan concentration was 2.57 mg L−1. Wastewater treatment plants can be more sensitive to the value of the critical triclosan concentration. The value for time-averaged critical specific growth rate was 0.051 h−1. Pre-or post-treatment requirements can be estimated using time-averaged critical growth rate values as a benchmarking tool in biological treatment systems.

2.
Sci Total Environ ; 849: 157869, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2049902

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to be present in sewage, and wastewater-based epidemiology has attracted much attention. However, the physical partitioning of SARS-CoV-2 in wastewater and the removal efficiency of treatment systems require further investigation. This study aimed to investigate the detectability and physical partitioning of SARS-CoV-2 in wastewater and assess its removal in a large-scale septic tank employing anaerobic, anoxic, and oxic processes in a sequential batch reactor, which was installed in a coronavirus disease 2019 (COVID-19) quarantine facility. The amount of SARS-CoV-2 RNA in wastewater was determined with polyethylene glycol (PEG) precipitation followed by quantitative polymerase chain reaction (qPCR), and the association of SARS-CoV-2 with wastewater solids was evaluated by the effect of filtration prior to PEG precipitation (pre-filtration). The amount of SARS-CoV-2 RNA detected from pre-filtered samples was substantially lower than that of samples without pre-filtration. These results suggest that most SARS-CoV-2 particles in wastewater are associated with the suspended solids excluded by pre-filtration. The removal efficiency of SARS-CoV-2 in the septic tank was evaluated based on the SARS-CoV-2 RNA concentrations in untreated and treated wastewater, which was determined by the detection method optimized in this study. Escherichia coli and pepper mild mottle virus (PMMoV) were also quantified to validate the wastewater treatment system's performance. The mean log10 reduction values of SARS-CoV-2, E. coli, and PMMoV were 2.47 (range, 2.25-2.68), 2.81 (range, 2.45-3.18), and 0.66 (range, 0.61-0.70), respectively, demonstrating that SARS-CoV-2 removal by the wastewater treatment system was comparable to or better than the removal of fecal indicators. These results suggest that SARS-CoV-2 can be readily removed by the septic tank. This is the first study to determine the removal efficiency of SARS-CoV-2 in a facility-level sequencing batch activated sludge system.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Escherichia coli , Humans , Japan , Polyethylene Glycols , Quarantine , RNA, Viral , Sewage , Wastewater
3.
Int J Environ Res Public Health ; 19(18)2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2010095

ABSTRACT

The COVID-19 pandemic and the related measures brought a change in daily life that affected the characteristics of the municipal wastewater and further, of the biological activated sludge. The activated sludge process is the most widely used biological wastewater treatment process in developed areas. In this paper, we aim to show the situation of specific investigations concerning the variation of the physicochemical parameters and biological composition of the activated sludge from one conventional wastewater treatment plant from a metropolitan area. The investigations were carried out for three years: 2019, 2020 and 2021. The results showed the most representative taxa of microorganisms: Microtrix, Aspidisca cicada, Vorticella convallaria, Ciliata free of the unknown and Epistylis and Rotifers. Even if other microorganisms were found in the sludge flocs, their small presence did not influence in any way the quality of the activated sludge and of the wastewater treatment process. That is why we conclude that protozoa (especially Flagellates and Ciliates) and rotifers were the most important. Together with the values and variation of the physicochemical parameters, they indicated a good, healthy, and stable activated sludge, along with an efficient purifying treatment process, no matter the loading conditions.


Subject(s)
COVID-19 , Water Purification , COVID-19/epidemiology , Humans , Pandemics , Sewage , Waste Disposal, Fluid , Wastewater
4.
Chem Eng J ; 425: 130635, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1267620

ABSTRACT

In the initial pandemic phase, effluents from wastewater treatment facilities were reported mostly free from Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) RNA, and thus conventional wastewater treatments were generally considered effective. However, there is a lack of first-hand data on i) comparative efficacy of various treatment processes for SARS-CoV-2 RNA removal; and ii) temporal variations in the removal efficacy of a given treatment process in the backdrop of active COVID-19 cases. This work provides a comparative account of the removal efficacy of conventional activated sludge (CAS) and root zone treatments (RZT) based on weekly wastewater surveillance data, consisting of forty-four samples, during a two-month period. The average genome concentration was higher in the inlets of CAS-based wastewater treatment plant (WWTP) in the Sargasan ward (1.25 × 103 copies/ L), than that of RZT-based WWTP (7.07 × 102 copies/ L) in an academic institution campus of Gandhinagar, Gujarat, India. ORF 1ab and S genes appeared to be more sensitive to treatment i.e., significantly reduced (p < 0.05) than N genes (p > 0.05). CAS treatment exhibited better RNA removal efficacy (p = 0.014) than RZT (p = 0.032). Multivariate analyses suggested that the effective genome concentration should be calculated based on the presence/absence of multiple genes. The present study stresses that treated effluents are not always free from SARS-CoV-2 RNA, and the removal efficacy of a given WWTP is prone to exhibit temporal variability owing to variations in active COVID-19 cases in the vicinity and genetic material accumulation over the time. Disinfection seems less effective than the adsorption and coagulation processes for SARS-CoV-2 removal. Results stress the need for further research on mechanistic insight on SARS-CoV-2 removal through various treatment processes taking solid-liquid partitioning into account.

5.
J Environ Chem Eng ; 8(5): 104429, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-739902

ABSTRACT

The world is combating the emergence of Coronavirus disease 2019 (COVID-19) caused by novel coronavirus; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Further, due to the presence of SARS-CoV-2 in sewage and stool samples, its transmission through water routes cannot be neglected. Thus, the efficient treatment of wastewater is a matter of utmost importance. The conventional wastewater treatment processes demonstrate a wide variability in absolute removal of viruses from wastewater, thereby posing a severe threat to human health and environment. The fate of SARS-CoV-2 in the wastewater treatment plants and its removal during various treatment stages remains unexplored and demands immediate attention; particularly, where treated effluent is utilised as reclaimed water. Consequently, understanding the prevalence of pathogenic viruses in untreated/treated waters and their removal techniques has become the topical issue of the scientific community. The key objective of the present study is to provide an insight into the distribution of viruses in wastewater, as well as the prevalence of SARS-CoV-2, and its possible transmission by the faecal-oral route. The review also gives a detailed account of the major waterborne and non-waterborne viruses, and environmental factors governing the survival of viruses. Furthermore, a comprehensive description of the potential methods (physical, chemical, and biological) for removal of viruses from wastewater has been presented. The present study also intends to analyse the research trends in microalgae-mediated virus removal and, inactivation. The review also addresses the UN SDG 'Clean Water and Sanitation' as it is aimed at providing pathogenically safe water for recycling purposes.

SELECTION OF CITATIONS
SEARCH DETAIL